5.1 This test method is designed to produce bearing response data for material specifications, research and development, quality assurance, and structural design and analysis. The standard configuration for each procedure is very specific and is intended primarily for development of quantitative double- and single-shear bearing response data for material comparison and structural design. Procedures A and D, the double-shear configurations, with a single fastener loaded in shear and reacted by laminate tension or compression, are particularly recommended for basic material evaluation and comparison. Procedures B and C, the single-shear, single- or double-fastener configurations are more useful in evaluation of specific joint configurations, including fastener failure modes. The Procedure B specimen may be tested in either an unstabilized (no support fixture) or stabilized configuration. The unstabilized configuration is intended for tensile loading and the stabilized configuration is intended for compressive loading (although tensile loading is permitted). The Procedure C specimen is particularly well-suited for development of countersunk-fastener bearing strength data where a near-double-shear fastener rotational stiffness is desired. These Procedure B and C configurations have been extensively used in the development of design allowables data.
5.2 It is important to note that these four procedures, using the standard test configurations, will generally result in bearing strength mean values that are not of the same statistical population, and thus not in any way a “basic material property.”
Note 2: Typically, Procedure D will yield slightly higher strengths than Procedure A (due to the finite edge distance, e, in Procedure A); while Procedure C will yield significantly higher strengths than Procedure B (due to the larger fastener rotation and higher peak bearing stress in Procedure B). For protruding head fasteners, Procedure D will typically yield somewhat higher results than Procedure C (due to both stress peaking and finite edge distance in Procedure C), and Procedures A and C yield roughly equivalent results.
5.3 It is also important to note that the parameter variations of the four procedures (tabulated in Section 4) provide flexibility in the conduct of the test, allowing adaptation of the test setup to a specific application. However, the flexibility of test parameters allowed by these variations makes meaningful comparison between datasets difficult if the datasets were not tested using the same procedure and identical test parameters.
5.4 General factors that influence the mechanical response of composite laminates and should therefore be reported include the following: material, methods of material preparation and lay-up, specimen stacking sequence, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, void content, and volume percent reinforcement.
5.5 Specific factors that influence the bearing response of composite laminates and should therefore be reported include not only the loading method (either Procedure A, B, or C) but t
術(shù)語 | 描述 |
---|---|
bearing area Bearing Area | 用于標(biāo)準(zhǔn)化載荷的有效面積,等于孔徑乘以試樣厚度。 |
bearing strength Bearing Strength | 層壓板在測試過程中承受的最大應(yīng)力值。 |
counter sink depth to thickness ratio Countersink Depth to Thickness Ratio | 锪孔深度與試樣厚度的比率,通常為名義值。 |
萬能試驗(yàn)機(jī) 型號:ASTM E4 | 用于施加載荷并測量材料性能 |
雙剪夾具 適用于層壓板測試 | 用于固定試樣并施加雙剪載荷的裝置 |
Copyright ?2007-2025 ANTPEDIA, All Rights Reserved
京ICP備07018254號 京公網(wǎng)安備1101085018 電信與信息服務(wù)業(yè)務(wù)經(jīng)營許可證:京ICP證110310號
頁面更新時間: 2025-06-09 23:17